hop-client Documentation

SCiMMA

Jul 29, 2020

CONTENTS

1 User’s Guide 3
1.1 Installation e e e e e e e e e e e 3
1.2 Quickstart e e e e e e e e e e e e e e e e 3
1.3 Streaming L e e e e e 5
1.4 Authentication e e e e e e e e 6
1.5 Message Formats L e e e e e e 7
1.6 Commands e e e e e e e e e e 8
2 API Reference 11
2.1 hop-client APT e e e e e e 11
3 Indices and tables 15
Python Module Index 17
Index 19

hop-client Documentation

hop-client is a pub-sub client library for Multimessenger Astrophysics.

CONTENTS 1

hop-client Documentation

2 CONTENTS

CHAPTER
ONE

USER’S GUIDE

1.1 Installation

You can install hop-client either via pip, conda, or from source.

To install with pip:

’pip install -U hop-client

To install with conda, you must use the channel from the SCIMMA Anaconda organization:

’conda install --channel scimma hop-client

To install from source:

tar -xzf hop-client-x.y.z.tar.gz
cd hop-client-x.y.z
python setup.py install

1.2 Quickstart

* Using the CLI
— Publish messages
— Consume messages
» Using the Python API

— Publish messages

— Consume messages

hop-client Documentation

1.2.1 Using the CLI

By default, authentication is enabled, reading in configuration settings from config.toml. The path to this config-
uration can be found by running hop auth locate. One can initialize this configuration with default settings by
running hop auth setup. To disable authentication in the CLI client, one can run ——no—auth.

Publish messages

hop publish kafka://hostname:port/gcn —-f CIRCULAR example.gcn3

Example messages are provided in tests/data including:
* A GCN circular (example.gcn3)

* A VOEvent (example_voevent .xml)

Consume messages

hop subscribe kafka://hostname:port/gcn —-s EARLIEST

This will read messages from the gen topic from the earliest offset and read messages until an end of stream (EOS) is
received.

1.2.2 Using the Python API

Publish messages

Using the python API, we can publish various types of messages, including structured messages such as GCN Circulars
and VOEvents:

from hop import stream
from hop.models import GCNCircular

read in a GCN circular
with open("path/to/circular.gcn3", "r") as f:
circular = GCNCircular.load(f)

with stream.open ("kafka://hostname:port/topic", "w") as s:
s.write (circular)

In addition, we can also publish unstructured messages as long as they are JSON serializable:

from hop import stream

with stream.open ("kafka://hostname:port/topic", "w") as s:
s.write ({"my": "message"})

By default, authentication is enabled for the Hop broker, reading in configuration settings from config.toml. In
order to modify various authentication options, one can configure a St ream instance and pass in an Auth instance
with credentials:

4 Chapter 1. User’s Guide

hop-client Documentation

from hop import Stream
from hop.auth import Auth

auth = Auth("my-username", "my-password")
stream = Stream(auth=auth)

with stream.open ("kafka://hostname:port/topic", "w") as s:
s.write ({"my": "message"})

To explicitly disable authentication, one can set auth to False.

Consume messages

One can consume messages through the python API as follows:

from hop import stream

with stream.open("kafka://hostname:port/topic", "r") as s:
for message in s:
print (message)

This will listen to the Hop broker, listening to new messages and printing them to stdout as they arrive until there are
no more messages in the stream. By default, this will only process new messages since the connection was opened.
The start_at option lets you control where in the stream you can start listening from. For example, if you’d like to
listen to all messages stored in a topic, you can do:

from hop import stream
from hop.io import StartPosition

sStream = Stream(start_at=StartPosition.EARLIEST)
with stream.open ("kafka://hostname:port/topic", "r") as s:

for message in s:
print (message)

1.3 Streaming

* The Stream Object

1.3.1 The Stream Object

The St ream object allows a user to connect to a Kafka broker and read in a variety of alerts, such as GCN circulars.
It also allows one to specify default settings used across all streams opened from the Stream instance.

Let’s open up a stream and show the St ream object in action:

from hop import Stream

stream = Stream(persist=True)
with stream.open("kafka://hostname:port/topic", "r") as s:

(continues on next page)

1.3. Streaming 5

hop-client Documentation

(continued from previous page)

for message in s:
print (message)

The persist option allows one to listen to messages forever and keeps the connection open after an end of stream
(EOS) is received. This is to allow long-lived connections where one may set up a service to process incoming GCNss,
for example.

A common use case is to not specify any defaults ahead of time, so a shorthand is provided for using one:

from hop import stream

with stream.open ("kafka://hostname:port/topic", "r") as s:
for message in s:
print (message)

A complete list of configurable options in St ream are:
e auth: A bool or auth.Auth instance to provide authentication
e start_at: The message offset to start at, by passing inan io.StartPosition
* persist: Whether to keep a long-live connection to the client beyond EOS

In addition, st ream. open provides an option to retrieve Kafka message metadata as well as the message itself, such
as the Kafka topic, key, timestamp and offset. This may be useful in the case of listening to multiple topics at once:

from hop import stream

with stream.open ("kafka://hostname:port/topicl,topic2", "r", metadata=True) as s:
for message, metadata in s:
print (message, metadata.topic)

1.4 Authentication

* Configuration

» Using Credentials

1.4.1 Configuration

Since connections to the Hopskotch server require authentication, there are several utilities exposed to generate and
provide credentials for both the CLI and python API. hop auth provides command line options to generate a con-
figuration file with proper credentials needed to authenticate.

In order to generate a configuration file, one can run hop auth setup, which prompts the user for a username and
password to connect to Hopskotch to publish or subscribe to messages.

The default location for the configuration file can be found with hop auth locate, which points by default to
${HOME}/.config/hop/config.toml, but can be configured by setting the XDG_CONF IG_PATH variable.

6 Chapter 1. User’s Guide

hop-client Documentation

1.4.2 Using Credentials

Authentication is enabled by default and will read credentials from the path resolved by hop auth locate.

For the python API, one can modify various authentication options by passing in an Auth instance with credentials to
a St ream instance. This provides a similar interface to authenticating as with the requests library.

from hop import Stream
from hop.auth import Auth

auth = Auth("my-username", "my-password")
stream = Stream(auth=auth)

with stream.open ("kafka://hostname:port/topic", "w") as s:
s.write ({"my": "message"})

In order to disable authentication in the command line interface, you can pass ——no-auth for various CLI commands.
For the python API, you can set auth to False.

1.5 Message Formats

* Structured Messages

» Unstructured Messages

The hop client provides a few in-memory representations for common message types for easy access to various mes-
sage properties, as well as loading messages from their serialized forms or from disk. These message formats, or
models, can be sent directly to an open St ream to provide seamless serialization of messages through Hopskotch.

1.5.1 Structured Messages

Currently, the structured messages available are VOEvent and GCNCircular. To give an example of its usage:

from hop import Stream
from hop.auth import load_auth
from hop.models import VOEvent

xml_path = "/path/to/voevent.xml"
voevent = VOEvent.load_file(xml_path)

stream = Stream(auth=load_auth())
with stream.open("kafka://hostname:port/topic", "w") as s:
s.write (voevent)

1.5. Message Formats 7

hop-client Documentation

1.5.2 Unstructured Messages

Unstructured messages can be sent directly to an open Stream instance and will be serialized appropriately. Any
python object that can be JSON serialized can be sent. Examples include a dictionary, a byte64 encoded string, and a

list.

1.6 Commands

* hop auth
* hop publish

* hop subscribe

* hop version

hop-client provides a command line interface for various tasks:
e hop auth: Authentication utilities
* hop publish: Publish messages such as GCN circulars and notices
* hop subscribe: Listen to messages such as GCN circulars and notices

* hop version: Show version dependencies of hop-client

1.6.1 hop auth

This command allows a user to handle auth-based configuration.

usage: hop auth [-h] <command>
Authentication utilities.

optional arguments:
-h, —--help show this help message and exit

Commands :
<command>
locate display authentication config path
setup set up authentication config with defaults

1.6.2 hop publish

This command allows a user to publish various structured and unstructured messages, including:
* RFC 822 formatted GCN circular
* An XML formatted GCN/VOEvent notice
* Unstructured messages such as byte-encoded or JSON-serializable data.

Structured messages such as GCN circulars and VOEvents are published as JSON-formatted text.

8 Chapter 1

. User’s Guide

https://gcn.gsfc.nasa.gov/gcn3_circulars.html
https://gcn.gsfc.nasa.gov/tech_describe.html

hop-client Documentation

usage: hop publish [-h] [--no-auth] [-f {CIRCULAR,VOEVENT,BLOB}]
URL MESSAGE [MESSAGE ...]

Parse and publish messages.

positional arguments:

URL Sets the URL (kafka://host[:port]/topic) to publish
messages to.
MESSAGE One or more messages to publish.

optional arguments:

-h, —--help show this help message and exit
—--no-auth If set, disable authentication.
—-f {CIRCULAR, VOEVENT,BLOB}, —--format {CIRCULAR,VOEVENT,BLOB}

Specify the message format. Defaults to BLOB for an
unstructured message.

1.6.3 hop subscribe

This command allows a user to subscribe to messages and print them to stdout.

usage: hop subscribe [-h] [--no-auth] [-s {EARLIEST,LATEST,PRODUCER}] [-p]

Receive and parse messages.
positional arguments:
URL Sets the URL (kafka://host[:port]/topic) to publish

messages to.

optional arguments:

-h, --help show this help message and exit

--no—-auth If set, disable authentication.

-s {EARLIEST,LATEST,PRODUCER}, —--start—-at {EARLIEST,LATEST,PRODUCER}
Set the message offset offset to start at. Default:
LATEST.

-p, ——persist If set, persist or listen to messages indefinitely.
Otherwise, will stop listening when EOS is received.

-j, ——Jjson Request message output as raw json

1.6.4 hop version

This command prints all the versions of the dependencies

usage: hop version [-h]
List all the dependencies' versions.

optional arguments:
-h, —--help show this help message and exit

1.6. Commands 9

hop-client Documentation

10 Chapter 1. User’s Guide

CHAPTER
TWO

2.1

API REFERENCE

hop-client API

2.1.1 hop.auth

class hop.auth.Auth (user, password, ssl=True, method=<SASLMethod. SCRAM_SHA_512: 3>,

hop.

hop.

**kwargs)
Attach SASL-based authentication to a client.

Returns client-based auth options when called.

user [str] Username to authenticate with.

password [str] Password to authenticate with.

ssl [bool, optional] Whether to enable SSL (enabled by default).

method [SASLMethod, optional] The SASL method to authenticate, default = SASL-
Method.SCRAM_SHA_512. See valid SASL methods in SASLMethod.

ssl_ca_location [str, optional] If using SSL via a self-signed cert, a path/location to the certificate.

auth.get_auth_path()
Determines the default location for auth configuration.

Returns: The path to the authentication configuration file.

auth.load_auth (authfile="/home/docs/.config/hop/config.toml’)
Configures an Auth instance given a configuration file.

Args:
authfile: Path to a configuration file, loading from the default location if not given.
Returns: A configured Auth instance.

Raises: KeyError: An error occurred parsing the configuration file.

11

hop-client Documentation

2.1.2 hop.cli

hop.cli.add_client_opts (parser)
Add general client options to an argument parser.

Args: parser: An ArgumentParser instance to add client options to.

2.1.3 hop.io

class hop.io.Deserializer (value)
An enumeration.

classmethod deserialize (message)
Deserialize a stream message and instantiate a model.

Args: message: A serialized message.
Returns: A data container corresponding to the format in the serialized message.
Raises:
ValueError: If the message is incorrectly formatted or if the message format is not recognized.

class hop.io.Stream (auth=True, start_at=<ConsumerStartPosition.LATEST: 2>, persist=False)
Defines an event stream.

Sets up defaults used within the client so that when a stream connection is opened, it will use defaults specified
here.

Args:

auth: A bool or Auth instance. Defaults to loading from auth.load_auth() if set to True. To disable au-
thentication, set to False.

start_at: The message offset to start at in read mode. Defaults to LATEST. persist: Whether to listen to
new messages forever or stop

when EOS is received in read mode. Defaults to False.

open (url, mode="r', metadata=False)
Opens a connection to an event stream.

Args: url: Sets the broker URL to connect to.

Kwargs: mode: Read (‘r’) or write (‘w’) from the stream. metadata: Whether to receive message meta-
data along

with payload (read only).

Returns: An open connection to the client, either an adc Producer instance in write mode or an adc
Consumer instance in read mode.

Raises:

ValueError: If the mode is not set to read/write or if more than one topic is specified in write
mode.

12 Chapter 2. API Reference

hop-client Documentation

2.1.4 hop.publish

2.1.5 hop.subscribe
hop.subscribe.print_message (message_model, json_dump=False)
Print the content of a message.

Args: message_model: dataclass model object for a message json_dump: boolean indicating whether to print
as raw json

Returns: None

2.1.6 hop.models
class hop.models.GCNCircular (header: dict, body: str)
Defines a GCN Circular structure.
The parsed GCN circular is formatted as a dictionary with the following schema:
{‘headers’: {‘title’: ..., ‘number’: ..., ...}, ‘body’: ...}

asdict ()
Represents the GCN Circular as a dictionary.

Returns: The dictionary representation of the Circular.

classmethod load (email_input)
Create a new GCNCircular from an RFC 822 formatted circular.

Args: email_input: A file object or string.
Returns: The GCNCircular.

classmethod load file (filename)
Create a new GCNCircular from an RFC 822 formatted circular file.

Args: filename: The GCN filename.
Returns: The GCNCircular.

serialize ()
Wrap the message with its format and content.

Returns: A dictionary with “format” and “content” key-value pairs.

class hop.models.MessageBlob (content: str, missing_schema: bool = False)
Defines an unformatted message structure.

This is included to mirror the implementation of structured formats.

asdict ()
Represents the message as a dictionary.

Returns: The dictionary representation of the message.

classmethod load (blob_input)
Create a blob message from input text.

Args: blob_input: The unstructured message text or file object.
Returns: The Blob.

classmethod load_file (filename)
Create a blob message from an input file.

2.1. hop-client API 13

hop-client Documentation

Args: filename: A filename.
Returns: The Blob.

serialize ()
Wrap the message with its format and content.

Returns: A dictionary with “format” and “content” key-value pairs

class hop.models.VOEvent (ivorn: str, role: str = ‘observation', version: str = 2.0', Who: dict =
<factory>, What: dict = <factory>, WhereWhen: dict = <factory>, How:
dict = <factory>, Why: dict = <factory>, Citations: dict = <factory>,
Description: dict = <factory>, Reference: dict = <factory>)
Defines a VOEvent 2.0 structure.

Implements the schema defined by: http://www.ivoa.net/Documents/VOEvent/20110711/

asdict ()
Represents the VOEvent as a dictionary.

Returns: A dictionary representation of the VOEvent.

classmethod load (xml_input)
Create a new VOEvent from an XML-formatted VOEvent.

Args: xml_input: A file object, string, or generator.
Returns: The VOEvent.

classmethod load_ file (filename)
Create a new VOEvent from an XML-formatted VOEvent file.

Args: filename: Name of the VOEvent file.
Returns: The VOEvent.

serialize ()
Wrap the message with its format and content.

Returns: A dictionary with “format” and “content” key-value pairs.

2.1.7 hop.version
hop.version.get_packages ()
Returns the package dependencies used within hop-client.

hop.version.print_packages_versions ()
Print versions for the passed packages.

14 Chapter 2. API Reference

http://www.ivoa.net/Documents/VOEvent/20110711/

CHAPTER
THREE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

15

hop-client Documentation

16 Chapter 3. Indices and tables

hop

hop.
hop.
hop.
hop.
hop.
hop.

.auth, 11

cli, 12

io, 12
models, 13
publish, 13
subscribe, 13
version, 14

PYTHON MODULE INDEX

17

hop-client Documentation

18 Python Module Index

A

add_client_opts () (in module hop.cli), 12
asdict () (hop.models.GCNCircular method), 13
asdict () (hop.models.MessageBlob method), 13
asdict () (hop.models.VOEvent method), 14
Auth (class in hop.auth), 11

D

deserialize () (hop.io.Deserializer class method),
12
Deserializer (class in hop.io), 12

G

GCNCircular (class in hop.models), 13
get_auth_path () (in module hop.auth), 11
get_packages () (in module hop.version), 14

Fi

hop.auth
module, 11
hop.cli
module, 12
hop.io
module, 12
hop.models
module, 13
hop.publish
module, 13
hop.subscribe
module, 13
hop.version
module, 14

L

load () (hop.models. GCNCircular class method), 13
load () (hop.models.MessageBlob class method), 13
load () (hop.models.VOEvent class method), 14
load_auth () (in module hop.auth), 11

load_file() (hop.models.GCNCircular class
method), 13

load_file() (hop.models.MessageBlob class
method), 13

INDEX

load_file () (hop.models.VOEvent class method), 14

M

MessageBlob (class in hop.models), 13
module
hop.auth, 11
hop.cli, 12
hop.io, 12
hop.models, 13
hop.publish, 13
hop.subscribe, 13
hop.

O

open () (hop.io.Stream method), 12

F)

print_message () (in module hop.subscribe), 13
print_packages_versions () (in module
hop.version), 14

version, 14

S

serialize () (hop.models. GCNCircular method), 13
serialize () (hop.models.MessageBlob method), 14
serialize () (hop.models.VOEvent method), 14
Stream (class in hop.io), 12

V

VOEvent (class in hop.models), 14

19

	User’s Guide
	Installation
	Quickstart
	Streaming
	Authentication
	Message Formats
	Commands

	API Reference
	hop-client API

	Indices and tables
	Python Module Index
	Index

