

hop documentation

hop-client is a pub-sub client library for Multimessenger Astrophysics.

User’s Guide

	Installation

	Quickstart

	Streaming

	Authentication

	Message Formats

	Robust Publication

	Commands

API Reference

	hop-client API
	hop.auth

	hop.cli

	hop.configure

	hop.io

	hop.robust_publisher

	hop.publish

	hop.subscribe

	hop.models

	hop.plugins

	hop.version

Indices and tables

	Index

	Module Index

	Search Page

Installation

You can install hop-client either via pip, conda, or from source.

To install with pip:

pip install -U hop-client

To install with conda:

conda install -c conda-forge hop-client

To install from source:

tar -xzf hop-client-x.y.z.tar.gz
cd hop-client-x.y.z
python setup.py install

Quickstart

	Using the CLI

	Publish messages

	Consume messages

	View Available Topics

	Using the Python API

	Publish messages

	Consume messages

Using the CLI

By default, authentication is enabled, reading in credentials
from auth.toml. The path to this configuration can be found by running
hop auth locate. One can initialize this configuration with default
settings by running hop auth add. To disable authentication in the CLI
client, one can use the --no-auth option.

Publish messages

hop publish kafka://hostname:port/gcn -f CIRCULAR example.gcn3

Example messages are provided in tests/data including:

	A GCN circular (example.gcn3)

	A VOEvent (example_voevent.xml)

Consume messages

hop subscribe kafka://hostname:port/gcn -s EARLIEST

This will read messages from the gcn topic from the earliest offset
and read messages as they arrive. By default this will listen to
messages until the user stops the program (Ctrl+C to stop).

View Available Topics

hop list-topics kafka://hostname:port/

This will list all of the topics on the given server which you are currently
authorized to read or write.

Using the Python API

Publish messages

Using the python API, we can publish various types of messages, including
structured messages such as GCN Circulars and VOEvents:

from hop import stream
from hop.models import GCNCircular

read in a GCN circular
with open("path/to/circular.gcn3", "r") as f:
 circular = GCNCircular.load(f)

with stream.open("kafka://hostname:port/topic", "w") as s:
 s.write(circular)

In addition, we can also publish unstructured messages as long as they are
JSON serializable:

from hop import stream

with stream.open("kafka://hostname:port/topic", "w") as s:
 s.write({"my": "message"})

By default, authentication is enabled for the Hop broker, reading in configuration
settings from config.toml. In order to modify various authentication options, one
can configure a Stream instance and pass in an Auth instance with credentials:

from hop import Stream
from hop.auth import Auth

auth = Auth("my-username", "my-password")
stream = Stream(auth=auth)

with stream.open("kafka://hostname:port/topic", "w") as s:
 s.write({"my": "message"})

To explicitly disable authentication, one can set auth to False.

Consume messages

One can consume messages through the python API as follows:

from hop import stream

with stream.open("kafka://hostname:port/topic", "r") as s:
 for message in s:
 print(message)

This will listen to the Hop broker, listening to new messages and printing them to
stdout as they arrive.
By default, this will only process new messages since the connection was opened.
The start_at option lets you control where in the stream you can start listening
from. For example, if you’d like to listen to all messages stored in a topic, you can do:

from hop import stream
from hop.io import StartPosition

stream = Stream(start_at=StartPosition.EARLIEST)

with stream.open("kafka://hostname:port/topic", "r") as s:
 for message in s:
 print(message)

Streaming

	The Stream Object

	Anatomy of a Kafka URL

	Committing Messages Manually

	Attaching Metadata to Messages

The Stream Object

The Stream object allows a user to connect to a Kafka broker and read
in a variety of alerts, such as GCN circulars. It also allows one to
specify default settings used across all streams opened from the Stream
instance.

Let’s open up a stream and show the Stream object in action:

from hop import Stream

stream = Stream(until_eos=True)
with stream.open("kafka://hostname:port/topic", "r") as s:
 for message in s:
 print(message)

The until_eos option allows one to listen to messages until
the no more messages are available (EOS or end of stream). By default
the connection is kept open indefinitely.
This is to allow long-lived connections where one may set up a service
to process incoming GCNs, for example.

A common use case is to not specify any defaults ahead of time,
so a shorthand is provided for using one:

from hop import stream

with stream.open("kafka://hostname:port/topic", "r") as s:
 for message in s:
 print(message)

A complete list of configurable options in Stream are:

	auth: A bool or auth.Auth instance to provide authentication

	start_at: The message offset to start at, by passing in an io.StartPosition

	until_eos: Whether to stop processing messages after an EOS is received

One doesn’t have to use the context manager protocol (with block)
to open up a stream as long as the stream is explicitly closed afterwards:

from hop import stream

s = stream.open("kafka://hostname:port/topic", "r")
for message in s:
 print(message)
s.close()

So far, all examples have shown the iterator interface for reading messages from an open
stream. But one can instead call s.read() directly or in the case of more specialized
workflows, may make use of extra keyword arguments to configure an open stream. For example,
the metadata option allows one to retrieve Kafka message metadata as well
as the message itself, such as the Kafka topic, key, timestamp and offset. This may
be useful in the case of listening to multiple topics at once:

from hop import stream

with stream.open("kafka://hostname:port/topic1,topic2", "r") as s:
 for message, metadata in s.read(metadata=True):
 print(message, metadata.topic)

Anatomy of a Kafka URL

Both the CLI and python API take a URL that describes how to connect to various
Kafka topics, and takes the form:

kafka://[username@]broker/topic[,topic2[,...]]

The broker takes the form hostname[:port] and gives the URL to connect to a
Kafka broker. Optionally, a username can be provided, which is used to select
among available credentials to use when communicating with the broker.
Finally, one can publish to a topic or subscribe to one or more topics to consume messages
from.

Committing Messages Manually

By default, messages that are read in by the stream are marked as read immediately after
returning them from an open stream instance for a given group ID. This is suitable for most cases,
but some workflows have more strict fault tolerance requirements and don’t want to lose
messages in the case of a failure while processing the current message. We can instead commit
messages after we are done processing them so that in the case of a failure, a process that is
restarted can get the same message back and finish processing it before moving on to the next.
This requires returning broker-specific metadata as well as assigning yourself to a specific group ID.
A workflow to do this is shown below:

from hop import stream

with stream.open("kafka://hostname:port/topic1", "r", "mygroup") as s:
 for message, metadata in s.read(metadata=True, autocommit=False):
 print(message, metadata.topic)
 s.mark_done(metadata)

Attaching Metadata to Messages

Apache Kafka supports headers to associate metadata with messages, separate from the message body,
and the hop python API supports this feature as well. Headers should generally be small and
ideally optional information; most of a message’s content should be in its body.

Each header has a string key, and a binary or unicode value. A collection of headers may be provided
either as a dictionary or as a list of (key, value) tuples. Duplicate header keys are permitted;
the list representation is necessary to utilize this allowance.

It is important to note that Hopskotch reserves all header names starting with an underscore (_)
for internal use; users should not set their own headers with such names.

Sending messages with headers and viewing the headers attached to received messages can be done as
shown below:

from hop import stream

with stream.open("kafka://hostname:port/topic1", "w") as s:
 s.write({"my": "message"}, headers={"priority": "1", "sender": "test"})
 s.write({"my": "other message"}, headers=[("priority", "2"), ("sender", "test")])

from hop import stream

with stream.open("kafka://hostname:port/topic1", "r") as s:
 for message, metadata in s.read(metadata=True):
 print(message, metadata.headers)

Authentication

	Configuration

	Using Credentials

Configuration

Since connections to the Hopskotch server require authentication, there
are several utilities exposed to generate and provide credentials for
both the CLI and python API. hop auth provides command line
options to generate a configuration file with proper credentials needed
to authenticate.

In order to generate a configuration file, one can run hop auth add,
which prompts for a username and password to connect to Hopskotch
to publish or subscribe to messages. If you have the credentials csv file, you can
use it directly with hop auth add <CREDENTIALS_FILE>.

The default location for the authentication data file can be found with hop auth locate,
which points by default to ${XDG_CONFIG_HOME}/hop/auth.toml or
${HOME}/.config/hop/auth.toml if the XDG_CONFIG_HOME variable is not set.

Using Credentials

Authentication is enabled by default and will read credentials from the
path resolved by hop auth locate.

Multiple credentials may be stored together using this mechanism.
Additional credentials may be added using hop auth add, while the currently available
credentials may be displayed with hop auth list and unwanted credentials can be removed
with hop auth remove. Credentials can be added either interactively or from CSV files.
For removal, credentials are specified by username, or <username>@<hostname>
in case of ambiguity.

When using the hop CLI to connect to connect to a kafka server, a credential will be selected
according to the following rules:

	A credential with a matching hostname will be selected, unless no stored credential has a
matching hostname, in which case a credential with no specific hostname can be selected.

	If a username is specified as part of the authority component of the URL (e.g.
kafka://username@example.com/topic) only credentials with that username will be considered.

	If no username is specified and there is only one credential, which is not specifically
associated with any hostname, it will be used for all hosts.

For the python API, one can modify various authentication options by passing
in an Auth instance with credentials to a Stream instance.
This provides a similar interface to authenticating as with the requests library.

from hop import Stream
from hop.auth import Auth

auth = Auth("my-username", "my-password")
stream = Stream(auth=auth)

with stream.open("kafka://hostname:port/topic", "w") as s:
 s.write({"my": "message"})

A list of multiple Auth instance may also be passed, in which case the best match for the
connection being opened will be selected as described above.

In order to disable authentication in the command line interface, you can
pass --no-auth for various CLI commands. For the python API, you
can set auth to False.

Message Formats

	Structured Messages

	Unstructured Messages

	Register External Message Models

	Define a message model

	Register a message model

	Set up entry points within your package

The hop client provides a few in-memory representations for common
message types for easy access to various message properties, as well
as loading messages from their serialized forms or from disk. These
message formats, or models, can be sent directly to an open Stream
to provide seamless serialization of messages through Hopskotch.

Structured Messages

Currently, the structured messages available through the hop client
are VOEvent and GCNCircular.
To give an example of its usage:

from hop import Stream
from hop.auth import load_auth
from hop.models import VOEvent

xml_path = "/path/to/voevent.xml"
voevent = VOEvent.load_file(xml_path)

stream = Stream(auth=load_auth())
with stream.open("kafka://hostname:port/topic", "w") as s:
 s.write(voevent)

Unstructured Messages

Unstructured messages can be sent directly to an open Stream instance
and will be serialized appropriately. Any python object that can be JSON
serialized can be sent. Examples include a dictionary, a byte64 encoded
string, and a list.

Register External Message Models

Sometimes it may be useful to use custom structured messages that aren’t currently
available in the stock client. For instance, sending specialized messages between
services that are internal to a specific observatory. The hop client provides a
mechanism in which to register custom message types that are discoverable within
hop when publishing and subscribing for your own project. This requires creating
an external python library and setting up an entry point so that hop that discover
it upon importing the client.

There are three steps involved in creating and registering a custom message model:

	Define the message model.

	Register the message model.

	Set up an entry point within your package.

Define a message model

To do this, you need to define a dataclass that subclasses hop.models.MessageModel
and implement functionality to load your message mode via
the load() class method. As an example, assuming the message is represented as
JSON on disk:

from dataclasses import dataclass
import json

from hop.models import MessageModel

@dataclass
class Donut(MessageModel):

 category: str
 flavor: str
 has_filling: bool

 @classmethod
 def load(cls, input_):
 # input_ is a file object
 if hasattr(donut_input, "read"):
 donut = json.load(input_)
 # serialized input_
 else:
 donut = json.loads(input_)

 # unpack the JSON dictionary and return the model
 return cls(**donut)

For more information on dataclasses, see the Python Docs [https://docs.python.org/3/library/dataclasses.html].

Register a message model

Once you have defined your message model, registering the message model involves
defining a function with the hop.plugins.register decorator with key-value
pairs mapping a message model name and the model:

from hop import plugins

...

@plugins.register
def get_models():
 return {
 "donut": Donut,
 }

Set up entry points within your package

After registering your model, you’ll need to set up an entry point to your package
named hop_plugin as that entry point is explicitly used to auto-discover
new plugins. The module used for the entry point is wherever you registered your
model.

Setting up entry points may be different depending on how your package is set up.
Below we’ll give an example for setuptools and setup.py. In setup.py:

from setuptools import setup

...

setup(
 ...

 entrypoints = {"hop_plugin": ["donut-plugin = my.custom.module"]}
)

Some further resources on entry points:

	https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

Robust Publication

	The RobustProducer

	Usage

	Miscellaneous Details

The RobustProducer

In some situations, it may be critical to ensure that messages are sent to the Kafka broker, even when the
intervening network may be unreliable, the sending process may be killed unexpectedly, and so on.
The RobustProducer object extends the capabilities of the
simple Producer to provide this functionality.

The two main mechanisms used by the RobustProducer are to
maintain a local journal of messages which are queued to be sent or are in flight, and to listen for
confirmation messages from the Kafka broker that messages have been received.
The use of receipt confirmations enables the resending of messages which are lost in the network or if the broker
fails unexpectedly, while use of the journal ensures that even if the sending program is stopped suddenly,
it can resend any messages whose receipt was not yet confirmed.
Implications of this are that local disk space is required for the message journal (and the amount of
space used will be at least that of the sum of sizes of all messages in flight at the same time), and that
at-least-once delivery is guaranteed, but that in providing that guarantee, messages may be duplicated.
For example, duplication of messages on the broker will occur if the producer sends the mesage, but the broker’s
confirmation is lost in the network, so the producer is forced to assume that the message did not go
through and resends it.
Clients should be prepared to handle duplicate messages appropriately.

Usage

The simplest way to use the RobustProducer is as a context
manager:

from hop.robust_publisher import RobustProducer

with RobustProducer("kafka://hostname:port/topic") as publisher:
 for message in messages:
 publisher.write(message)

To control the location where the message journal is stored, one may set the journal_path option
when constructing the RobustProducer; the default is
"publisher.journal" which will place it the script’s current working directory.

Message sending is asynchronous, so
RobustProducer.write will return almost immediately,
as it only queues the message for sending.
The RobustProducer blocks internally until all messages are
successfully sent, so there can be a noticeable delay after all messages have been queued while they
complete sending.
In the event of a network or broker failure, this delay may extend indefinitely.

The RobustProducer constructor also
accepts an auth argument for specifying the
credentials with which it should connect, and will pass through any extra keyword arguments to
io.Stream.open.

For more advanced uses, RobustProducer can also be used
directly without being treated as a context manager:

from hop.robust_publisher import RobustProducer

publisher = RobustProducer("kafka://hostname:port/topic")
publisher.start()

#. . .
publisher.write(some_message)

#. . .
publisher.stop()

When used in this way, it is necessary to call
RobustProducer.start
before sending any messages, and RobustProducer.stop
after all messages have been sent to shut down the
RobustProducer’s internal background worker thread.
It is important to note that the user should not call
RobustProducer.run, as this method is exposed only as a
part of the python threading.Thread interface, and will block whatever thread calls it,
indefinitely.
Once stopped, a RobustProducer object cannot be restarted.

Miscellaneous Details

The message journal is intended to protect against disruption of the sending program, but at this time
does not include meaningful protection against sudden failure of the machine on which the program is
running; in particular, it does not ensure that data written to it is definitely flushed through
filesystem or hardware caching layers.
As a result, issues like power failures can lead to data loss.
The journal does contain checksumming and other sanity checking which enable detecting most forms of data
corruption, although truncation of the journal exactly at a boundary between entries currently cannot be
detected.
Currently, corruption of the journal will trigger an error and block (re)starting the
RobustProducer.

Messages are written to the journal essentially in plain text, so users whose data is sensitive should
take into account that the journal file must be suitably protected.

Currently, RobustProducer.write takes over the
delivery_callback option for Producer.write for its own use, so
end users are not able to register their own delivery callback handlers.

Commands

	hop auth

	hop list-topics

	hop publish

	hop subscribe

	hop version

hop-client provides a command line interface for various tasks:

	hop auth: Authentication utilities

	hop list-topics: SHow accessible Kafka topics

	hop publish: Publish messages such as GCN circulars and notices

	hop subscribe: Listen to messages such as GCN circulars and notices

	hop version: Show version dependencies of hop-client

hop auth

This command allows a user to configure credentials for authentication.

usage: hop auth [-h] [-q | -v] <command> ...

Authentication configuration utilities.

optional arguments:
 -h, --help show this help message and exit
 -q, --quiet If set, only display warnings and errors.
 -v, --verbose If set, display additional logging messages.

commands:
 <command>
 locate display configuration path
 list Display all stored credentials
 add Load a credential, specified either via a CSV file or
 interactively
 remove Delete a stored credential

No valid credential data found
You can get a credential from https://my.hop.scimma.org
To load your credential, run `hop auth add`

hop list-topics

This command allows a user to view the topics that are available for subscribing or publishing on
a given Hopskotch server.

Note that other topics may exist which the current user does not have permission to access.

usage: hop list-topics [-h] [--no-auth] URL

List available topics.

positional arguments:
 URL Sets the URL (kafka://host[:port]/topic) to publish messages to.

optional arguments:
 -h, --help show this help message and exit
 --no-auth If set, disable authentication.

No valid credential data found
You can get a credential from https://my.hop.scimma.org
To load your credential, run `hop auth add`

hop publish

This command allows a user to publish various structured and unstructured messages, including:

	RFC 822 formatted GCN circular [https://gcn.gsfc.nasa.gov/gcn3_circulars.html]

	An XML formatted GCN/VOEvent notice [https://gcn.gsfc.nasa.gov/tech_describe.html]

	Unstructured messages such as JSON-serializable data.

Structured messages such as GCN circulars and VOEvents are published as JSON-formatted text.

Unstructured messages may be piped to this command to be published. This mode of operation
requires JSON input with individual messages separated by newlines, and the Blob format
(-f BLOB) to be selected.

usage: hop publish [-h] [--no-auth] [-q | -v] [-f {VOEVENT,CIRCULAR,BLOB}]
 [-t]
 URL [MESSAGE [MESSAGE ...]]

Publish messages.

positional arguments:
 URL Sets the URL (kafka://host[:port]/topic) to publish
 messages to.
 MESSAGE Messages to publish.

optional arguments:
 -h, --help show this help message and exit
 --no-auth If set, disable authentication.
 -q, --quiet If set, only display warnings and errors.
 -v, --verbose If set, display additional logging messages.
 -f {VOEVENT,CIRCULAR,BLOB}, --format {VOEVENT,CIRCULAR,BLOB}
 Specify the message format. Defaults to BLOB for an
 unstructured message.
 -t, --test Mark messages as test messages by adding a header with
 key '_test'.

No valid credential data found
You can get a credential from https://my.hop.scimma.org
To load your credential, run `hop auth add`

hop subscribe

This command allows a user to subscribe to messages and print them to stdout.

usage: hop subscribe [-h] [--no-auth] [-q | -v] [-s {EARLIEST,LATEST}] [-e]
 [-g GROUP_ID] [-j] [-t]
 URL

Subscribe to messages.

positional arguments:
 URL Sets the URL (kafka://host[:port]/topic) to publish
 messages to.

optional arguments:
 -h, --help show this help message and exit
 --no-auth If set, disable authentication.
 -q, --quiet If set, only display warnings and errors.
 -v, --verbose If set, display additional logging messages.
 -s {EARLIEST,LATEST}, --start-at {EARLIEST,LATEST}
 Set the message offset offset to start at. Default:
 LATEST.
 -e, --until-eos If set, only subscribe until EOS is received (end of
 stream). Otherwise, listen to messages indefinitely.
 -g GROUP_ID, --group-id GROUP_ID
 Consumer group ID. If unset, a random ID will be
 generated.
 -j, --json Request message output as raw json
 -t, --test Process test messages instead of ignoring them.

No valid credential data found
You can get a credential from https://my.hop.scimma.org
To load your credential, run `hop auth add`

hop version

This command prints all the versions of the dependencies

usage: hop version [-h]

List all the dependencies' versions.

optional arguments:
 -h, --help show this help message and exit

No valid credential data found
You can get a credential from https://my.hop.scimma.org
To load your credential, run `hop auth add`

hop-client API

	hop.auth

	hop.cli

	hop.configure

	hop.io

	hop.robust_publisher

	hop.publish

	hop.subscribe

	hop.models

	hop.plugins

	hop.version

hop.auth

	
class hop.auth.Auth(user, password, host='', ssl=True, method=SASLMethod.SCRAM_SHA_512, **kwargs)

	Attach SASL-based authentication to a client.

Returns client-based auth options when called.

	Parameters

	
	user (str) – Username to authenticate with.

	password (str) – Password to authenticate with.

	host (str, optional) – The name of the host for which this authentication is valid.

	ssl (bool, optional) – Whether to enable SSL (enabled by default).

	method (SASLMethod, optional) – The SASL method to authenticate, default = SASLMethod.SCRAM_SHA_512.
See valid SASL methods in SASLMethod.

	ssl_ca_location (str, optional) – If using SSL via a self-signed cert, a path/location
to the certificate.

	
property hostname

	The hostname with which this creential is associated,
or the empty string if the credential did not contain this information

	
property mechanism

	The authentication mechanism to use

	
property password

	The password for this credential

	
property protocol

	The communication protocol to use

	
property ssl

	Whether communication should be secured with SSL

	
property ssl_ca_location

	The location of the Certfificate Authority data used for SSL,
or None if SSL is not enabled

	
property username

	The username for this credential

	
hop.auth.add_credential(args)

	Load a new credential and store it to the persistent configuration.

	Parameters

	args – Command line options/arguments object.
args.cred_file is taken as the path to a CSV file to import, or if None the user is
prompted to enter a credential directly.
args.force controls whether an existing credential with an identical name will be
overwritten.

	
hop.auth.delete_credential(name: str)

	Delete a credential from the persistent configuration.

	Parameters

	
	name – The username, or username and hostname separated by an ‘@’ character of the credential

	delete. (to) –

	Raises

	RuntimeError – If no credentials or more than one credential matches the specified name,
 making the operation impossible or ambiguous.

	
hop.auth.list_credentials()

	Display a list of all configured credentials.

	
hop.auth.load_auth(config_file=None)

	Configures an Auth instance given a configuration file.

	Parameters

	config_file – Path to a configuration file, loading from
the default location if not given.

	Returns

	A list of configured Auth instances.

	Raises

	
	RuntimeError – The config file exists, but has unsafe permissions
 and will not be read until they are corrected.

	KeyError – An error occurred parsing the configuration file.

	FileNotFoundError – The configuration file, either as specified
 explicitly or found automatically, does not exist

	
hop.auth.prune_outdated_auth(config_file=None)

	Remove auth data from a general configuration file.

This can be needed when updating auth data which was read from the general config for backwards
compatibility, but is then written out to the correct new location in a separate auth config,
as is now proper. With no further action, this would leave a vestigial copy from before the
update in the general config file, which would not be rewritten, so this function exists to
perform the necessary rewrite.

	Parameters

	config_file – Path to a configuration file, rewriting
the default location if not given.

	Raises

	RuntimeError – The config file is malformed.

	
hop.auth.read_new_credential(csv_file=None)

	Import a credential from a CSV file or obtain it interactively from the user.

	Parameters

	csv_file – Path to a file from which to read credential data in CSV format.
If unspecified, the user will be prompted to enter data instead.

	Returns

	A configured Auth object containing the new credential.

	Raises

	
	FileNotFoundError – If csv_file is not None and refers to a nonexistent path.

	KeyError – If csv_file is not None and the specified file does not contain either a username
 or password field.

	RuntimeError – If csv_file is None and the interactively entered username or passwod is
 empty.

	
hop.auth.select_matching_auth(creds, hostname, username=None)

	Selects the most appropriate credential to use when attempting to contact the given host.

	Parameters

	
	creds – A list of configured Auth objects. These can be obtained from load_auth().

	hostname – The name of the host for which to select suitable credentials.

	username – str, optional
The name of the credential to use.

	Returns

	A single Auth object which should be used to authenticate.

	Raises

	RuntimeError – Too many or too few credentials matched.

	
hop.auth.write_auth_data(config_file, credentials)

	Write configuration file for the set of credentials.

Creates containing directories as needed.

	Parameters

	
	config_file – configuration file path

	credentials – list of Auth objects representing credentials to be stored

hop.cli

	
hop.cli.add_client_opts(parser)

	Add general client options to an argument parser.

	Parameters

	parser – An ArgumentParser instance to add client options to.

	
hop.cli.add_logging_opts(parser)

	Add logging client options to an argument parser.

	Parameters

	parser – An ArgumentParser instance to add client options to.

	
hop.cli.get_log_level(args)

	Determine the log level from logging options.

	Parameters

	args – The parsed argparse arguments.

	Returns

	the logging log level.

	
hop.cli.set_up_logger(args)

	Set up common logging settings for CLI usage.

	Parameters

	args – The parsed argparse arguments.

hop.configure

	
hop.configure.get_config_path(type: str = 'general')

	Determines the default location for auth configuration.

	Parameters

	type – The type of configuration data for which the path should be looked up.
Recognized types are ‘general’ and ‘auth’.

	Returns

	The path to the requested configuration file.

	Raises

	ValueError – Unrecognized config type requested.

hop.io

	
class hop.io.Consumer(group_id, broker_addresses, topics, ignoretest=True, **kwargs)

	An event stream opened for reading one or more topics.
Instances of this class should be obtained from Stream.open().

	
close()

	End all subscriptions and shut down.

	
static is_test(message)

	True if message is a test message (contains ‘_test’ as a header key).

	Parameters

	message – The message to test.

	
mark_done(metadata)

	Mark a message as fully-processed.

	Parameters

	metadata – A Metadata instance containing broker-specific metadata.

	
read(metadata=False, autocommit=True, **kwargs)

	Read messages from a stream.

	Parameters

	
	metadata – Whether to receive message metadata alongside messages.

	autocommit – Whether messages are automatically marked as handled
via mark_done when the next message is yielded. Defaults to True.

	batch_size – The number of messages to request from Kafka at a time.
Lower numbers can give lower latency, while higher numbers will
be more efficient, but may add latency.

	batch_timeout – The period of time to wait to get a full batch of
messages from Kafka. Similar to batch_size, lower numbers can
reduce latency while higher numbers can be more efficient at the
cost of greater latency.
If specified, this argument should be a datetime.timedelta
object.

	
class hop.io.Deserializer(value)

	An enumeration.

	
class hop.io.Metadata(topic: str, partition: int, offset: int, timestamp: int, key: Union[str, bytes], headers: List[Tuple[str, bytes]], _raw: cimpl.Message)

	Broker-specific metadata that accompanies a consumed message.

	
class hop.io.Producer(broker_addresses, topic, **kwargs)

	An event stream opened for writing to a topic.
Instances of this class should be obtained from Stream.open().

	
close()

	Wait for enqueued messages to be written and shut down.

	
flush()

	Request that any messages locally queued for sending be sent immediately.

	
static pack(message, headers=None, test=False)

	Pack and serialize a message.

This is an advanced interface, which most users should not need to call directly, as
Producer.write uses it automatically.

	Parameters

	
	message – The message to pack and serialize.

	headers – The set of headers requested to be sent with the message, either as a
mapping, or as a list of 2-tuples. In either the mapping or the list case,
all header keys must be strings and and values should be either string-like or
bytes-like objects.

	test – Message should be marked as a test message by adding a header
with key ‘_test’.

	Returns: A tuple containing the serialized message and the collection of headers which
	should be sent with it.

	
write(message, headers=None, delivery_callback=<function raise_delivery_errors>, test=False)

	Write messages to a stream.

	Parameters

	
	message – The message to write.

	headers – The set of headers requested to be sent with the message, either as a
mapping, or as a list of 2-tuples. In either the mapping or the list case,
all header keys must be strings and and values should be either string-like or
bytes-like objects.

	delivery_callback – A callback which will be called when each message
is either delivered or permenantly fails to be delivered.

	test – Message should be marked as a test message by adding a header
with key ‘_test’.

	
write_raw(packed_message, headers=None, delivery_callback=<function raise_delivery_errors>)

	Write a pre-encoded message to the stream.

This is an advanced interface; for most purposes it is preferrable to use
Producer.write instead.

	Parameters

	
	packed_message – The message to write, which must already be correctly encoded by
Producer.pack

	headers – Any headers to attach to the message, either as a dictionary
mapping strings to strings, or as a list of 2-tuples of strings.

	delivery_callback – A callback which will be called when each message
is either delivered or permenantly fails to be delivered.

	
class hop.io.Stream(auth=True, start_at=ConsumerStartPosition.LATEST, until_eos=False)

	Defines an event stream.

Sets up defaults used within the client so that when a
stream connection is opened, it will use defaults specified here.

	Parameters

	
	auth – A bool or Auth instance. Defaults to
loading from auth.load_auth if set to
True. To disable authentication, set to False.

	start_at – The message offset to start at in read mode. Defaults to LATEST.

	until_eos – Whether to listen to new messages forever (False) or stop
when EOS is received in read mode (True). Defaults to False.

	
open(url, mode='r', group_id=None, ignoretest=True, **kwargs)

	Opens a connection to an event stream.

	Parameters

	
	url – Sets the broker URL to connect to.

	mode – Read (‘r’) or write (‘w’) from the stream.

	group_id – The consumer group ID from which to read.
Generated automatically if not specified.

	ignoretest – When True, read mode will silently discard
test messages.

	Returns

	An open connection to the client, either a Producer instance
in write mode or a Consumer instance in read mode.

	Raises

	ValueError – If the mode is not set to read/write, if more than
 one topic is specified in write mode, or if more than one broker is specified

	
hop.io.list_topics(url: str, auth: Union[bool, hop.auth.Auth] = True)

	List the accessible topics on the Kafka broker referred to by url.

	Parameters

	
	url – The Kafka broker URL. Only one broker may be specified. Topics
may be specified, in which case only topics in the intersection
of the set specified by the URL and actually present on the broker
will be returned. If a userinfo component is present in the URL and
auth is True, it will be treated as a hint to the automatic auth
lookup.

	auth – A bool or Auth instance. Defaults to
loading from auth.load_auth if set to
True. To disable authentication, set to False. If a username is
specified as part of url but auth is a Auth
instance the url information will be ignored.

	Returns

	A dictionary mapping topic names to
confluent_kafka.admin.TopicMetadata instances.

	Raises

	ValueError – If more than one broker is specified.

hop.robust_publisher

	
class hop.robust_publisher.PublicationJournal(journal_path='publisher.journal')

	An object which tracks the state of messages which are being sent, persists that state to disk,
and enables it to be restored if the program stops unexpectedly.

	
__init__(journal_path='publisher.journal')

	Prepare a journal, including loading any data previously persisted to disk.

	Parameters

	journal_path – The filesystem path from/to which the journal data should be read/written.

	Raises

	
	PermissionError – If existing journal file does not have suitable permissions.

	RuntimeError – If existing journal data cannot be read.

	
class NullLock

	A trivial context manager-compatible class which can be used in place of a lock when no
locking is needed.

	
static error_callback(kafka_error: cimpl.KafkaError)

	A safe callback handler for reporting Kafka errors.

	
get_delivery_callback(seq_num, lock=<hop.robust_publisher.PublicationJournal.NullLock object>)

	Construct a callback handler specific to a particular message which will either mark it
successfully sent or requeue it to send again.

The callback which is produced will take two arguments: A confluent_kafka.KafkaError
describing any error in sending the message, and confluent_kafka.Message containing the
message itself.

	Parameters

	
	seq_num – The sequence number of the message in question, previously returned by
get_next_message_to_send().

	lock – An optional reference to a lock object which the callback should hold when
invoked, e.g. to protect concurrent access to the journal.

	
get_next_message_to_send()

	Fetch the next message which should be sent

	Returns

	The next message in the form of a tuple of (seqeunce number, message, message headers),
or None if there are no messages currently needing to be sent.

	
has_messages_in_flight()

	Check whether there are messages for which a sending attempt has been started,
but has not yet conclusively succeeded or failed

	
has_messages_to_send()

	Check whether there are messages queued for sending (which have either not been sent at
all, or for which all sending attempts so far have failed, causing them to be requeued).

	
mark_message_sent(sequence_number)

	Mark a message as successfully sent, and removes it from further consideration.

Truncates and restarts the backing journal file if the number of messages in-flight and
waiting to be sent falls to zero, and restarts the sequence number assignment sequence.

	Raises

	RuntimeError – If no message with the specifed sequence number is currently recorded as
 being in-flight.

	
queue_message(message: bytes, headers=None)

	Record to the journal a message which is to be sent.

	Parameters

	
	message – A message to send, encoded as a bytes-like object.

	headers – Headers to be sent with the message, as a list of 2-tuples of bytes-like
objects.

	Returns

	The sequence number assigned to the message.
Sequence numbers are unique among all messages which are ‘live’ at the same time,
but will otherwise be recycled.

	Raises

	
	RuntimeError – If appending the new message to the on-disk journal fails.

	TypeError – If the message is not a suitable type (bytes)

	
requeue_message(sequence_number)

	
	Record a message send attempt as having failed by moving the message back from the
	in-flight pool to the queue of messages needing to be sent.

	Raises

	RuntimeError – If no message with the specifed sequence number is currently recorded as
 being in-flight.

	
class hop.robust_publisher.RobustProducer(url, auth=True, journal_path='publisher.journal', poll_wait=0.0001, **kwargs)

	
	
__init__(url, auth=True, journal_path='publisher.journal', poll_wait=0.0001, **kwargs)

	Construct a publisher which will retry sending messages if it does not receive confirmation
that they have arrived, including if it is itself taken offline (i.e. crashes) for some
reason.

This is intended to provide at least once delivery of messages: If a message is confirmed
received by the broker, it will not be sent again, but if any disruption of the network or
the publisher itself prevents it from receiving that confirmation, even if the message was
actually received by the broker, the publisher will assume the worst and send the message
again. Users of this class (and more generally consumers of data published with it) should
be prepared to discard duplicate messages.

	Parameters

	
	url – The URL for the Kafka topci to which messages will be published.

	auth – A bool or Auth instance. Defaults to
loading from auth.load_auth if set to
True. To disable authentication, set to False.

	journal_path – The path on the filesystem where the messages being sent should be
recorded until they are known to have been successfully received. This
path should be located somewhere that will survive system restarts, and if
messages contain sensitive data it should be noted that they will be
written unencrypted to this path. The journal size is generally limited to
the sum of sizes of messages queued for sending or in flight at the same
time, plus some small (few tens of bytes per message) bookkeeping
overhead. Note that this size can become large is a lengthy network
disruption prev ents messages from being sent; enough disk spacec should
be available to cover this possibility for the expected message rate and
duration of disruptions which may need to be handled.

	poll_wait – The time the publisher should spend checking for receipt of each message
directly after sending it. Tuning this parameter controls a tradeoff between
low latency discovery of successful message delivery and throughput. If the
time between sending messages is large compared to the latency for a message
to be sent and for a confirmation of receipt to return, it is useful to
increase this value so that the publisher will wait to discover that each
message has been sent (in the success case) instead of sleeping and waiting
for another message to send. If this value is ‘too low’ (much smaller than
both the time for a message to be sent and acknowledged and the time for the
next message to be ready for sending), the publisher will waste CPU time
entering and exiting the internal function used to receive event
notifications. If this value is too large (larger than or similar in size to
the time between messages needing to be sent) throughput will be lost as time
will be spent waiting to see if the previous message has been acknowledged
which could be better spent getting the next message sent out. When in doubt,
it is probably best to err on the side of choosing a small value.

	kwargs – Any additional arguments to be passed to hop.io.open.

	Raises

	
	OSError – If a journal file exists but cannot be read.

	Runtime Error – If the contents of the journal file are corrupted.

	
run()

	This method is not part of the public interface of this class, and should not be called directly
by users.

	
start()

	Start the background communication thread used by the publisher to send messages. This should
be called prior to any calls to RobustProducer.write.
This method should not be called more than once.

	
stop()

	Stop the background communication thread used by the publisher to send messages. This method
will block until the thread completes, which includes sending all queued messages.
RobustProducer.write should not be called after this method
has been called.
This method should not be called more than once.

	
write(message, headers=None)

	Queue a message to be sent. Message sending occurs asynchronously on a background thread, so
this method returns immediately unless an error occurs queuing the message.
RobustProducer.start must be called prior to calling this
method.

	Parameters

	
	message – A message to send.

	headers – Headers to be sent with the message, as a list of 2-tuples of strings.

	Raises

	
	RuntimeError – If appending the new message to the on-disk journal fails.

	TypeError – If the message is not a suitable type.

hop.publish

hop.subscribe

	
hop.subscribe.print_message(message, json_dump=False)

	Print the content of a message.

	Parameters

	
	message – message to print

	json_dump – boolean indicating whether to print as raw json

	Returns

	None

hop.models

	
class hop.models.Blob(content: Union[str, int, float, bool, None, Dict[str, Any], List[Any]], missing_schema: bool = False)

	Defines an unformatted message blob.

	
asdict()

	Represents the message as a dictionary.

	Returns

	The dictionary representation of the message.

	
classmethod load(blob_input)

	Create a blob message from input text.

	Parameters

	blob_input – The unstructured message text or file object.

	Returns

	The Blob.

	
serialize()

	Wrap the message with its format and content.

	Returns

	A dictionary with “format” and “content” keys.

	
class hop.models.GCNCircular(header: dict, body: str)

	Defines a GCN Circular structure.

The parsed GCN circular is formatted as a dictionary with
the following schema:

{‘headers’: {‘title’: …, ‘number’: …, …}, ‘body’: …}

	
classmethod load(email_input)

	Create a new GCNCircular from an RFC 822 formatted circular.

	Parameters

	email_input – A file object or string.

	Returns

	The GCNCircular.

	
serialize()

	Wrap the message with its format and content.

	Returns

	A dictionary with “format” and “content” key-value pairs.

	
class hop.models.MessageModel

	An abstract message model.

	
asdict()

	Represents the message model as a dictionary.

	
abstract classmethod load(input_)

	Create a new message model from a file object or string.
This base implementation has no functionality and should not be called.

	Parameters

	input – A file object or string.

	Returns

	The message model.

	
classmethod load_file(filename)

	Create a new message model from a file.

	Parameters

	filename – The path to a file.

	Returns

	The message model.

	
serialize()

	Wrap the message with its format and content.

	Returns

	A dictionary with “format” and “content” keys.

	
class hop.models.VOEvent(ivorn: str, role: str = 'observation', version: str = '2.0', Who: dict = <factory>, What: dict = <factory>, WhereWhen: dict = <factory>, How: dict = <factory>, Why: dict = <factory>, Citations: dict = <factory>, Description: dict = <factory>, Reference: dict = <factory>)

	Defines a VOEvent 2.0 structure.

	Implements the schema defined by:
	http://www.ivoa.net/Documents/VOEvent/20110711/

	
classmethod load(xml_input)

	Create a new VOEvent from an XML-formatted VOEvent.

	Parameters

	xml_input – A file object, string, or generator.

	Returns

	The VOEvent.

	
classmethod load_file(filename)

	Create a new VOEvent from an XML-formatted VOEvent file.

	Parameters

	filename – Name of the VOEvent file.

	Returns

	The VOEvent.

hop.plugins

	
hop.plugins.get_models()

	
	This plugin spec is used to return message models in the form:
	{“type”: Model}

where the type refers to a specific message model.

hop.version

	
hop.version.get_packages()

	Returns the package dependencies used within hop-client.

	
hop.version.print_packages_versions()

	Print versions for the passed packages.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hop	

 	
 	
 hop.auth	

 	
 	
 hop.cli	

 	
 	
 hop.configure	

 	
 	
 hop.io	

 	
 	
 hop.models	

 	
 	
 hop.plugins	

 	
 	
 hop.publish	

 	
 	
 hop.robust_publisher	

 	
 	
 hop.subscribe	

 	
 	
 hop.version	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

_

 	
 	__init__() (hop.robust_publisher.PublicationJournal method)

 	(hop.robust_publisher.RobustProducer method)

A

 	
 	add_client_opts() (in module hop.cli)

 	add_credential() (in module hop.auth)

 	add_logging_opts() (in module hop.cli)

 	
 	asdict() (hop.models.Blob method)

 	(hop.models.MessageModel method)

 	Auth (class in hop.auth)

B

 	
 	Blob (class in hop.models)

C

 	
 	close() (hop.io.Consumer method)

 	(hop.io.Producer method)

 	
 	Consumer (class in hop.io)

D

 	
 	delete_credential() (in module hop.auth)

 	
 	Deserializer (class in hop.io)

E

 	
 	error_callback() (hop.robust_publisher.PublicationJournal static method)

F

 	
 	flush() (hop.io.Producer method)

G

 	
 	GCNCircular (class in hop.models)

 	get_config_path() (in module hop.configure)

 	get_delivery_callback() (hop.robust_publisher.PublicationJournal method)

 	
 	get_log_level() (in module hop.cli)

 	get_models() (in module hop.plugins)

 	get_next_message_to_send() (hop.robust_publisher.PublicationJournal method)

 	get_packages() (in module hop.version)

H

 	
 	has_messages_in_flight() (hop.robust_publisher.PublicationJournal method)

 	has_messages_to_send() (hop.robust_publisher.PublicationJournal method)

 	
 hop.auth

 	module

 	
 hop.cli

 	module

 	
 hop.configure

 	module

 	
 hop.io

 	module

 	
 hop.models

 	module

 	
 	
 hop.plugins

 	module

 	
 hop.publish

 	module

 	
 hop.robust_publisher

 	module

 	
 hop.subscribe

 	module

 	
 hop.version

 	module

 	hostname (hop.auth.Auth property)

I

 	
 	is_test() (hop.io.Consumer static method)

L

 	
 	list_credentials() (in module hop.auth)

 	list_topics() (in module hop.io)

 	load() (hop.models.Blob class method)

 	(hop.models.GCNCircular class method)

 	(hop.models.MessageModel class method)

 	(hop.models.VOEvent class method)

 	
 	load_auth() (in module hop.auth)

 	load_file() (hop.models.MessageModel class method)

 	(hop.models.VOEvent class method)

M

 	
 	mark_done() (hop.io.Consumer method)

 	mark_message_sent() (hop.robust_publisher.PublicationJournal method)

 	mechanism (hop.auth.Auth property)

 	MessageModel (class in hop.models)

 	Metadata (class in hop.io)

 	
 module

 	hop.auth

 	hop.cli

 	hop.configure

 	hop.io

 	hop.models

 	hop.plugins

 	hop.publish

 	hop.robust_publisher

 	hop.subscribe

 	hop.version

O

 	
 	open() (hop.io.Stream method)

P

 	
 	pack() (hop.io.Producer static method)

 	password (hop.auth.Auth property)

 	print_message() (in module hop.subscribe)

 	print_packages_versions() (in module hop.version)

 	
 	Producer (class in hop.io)

 	protocol (hop.auth.Auth property)

 	prune_outdated_auth() (in module hop.auth)

 	PublicationJournal (class in hop.robust_publisher)

 	PublicationJournal.NullLock (class in hop.robust_publisher)

Q

 	
 	queue_message() (hop.robust_publisher.PublicationJournal method)

R

 	
 	read() (hop.io.Consumer method)

 	read_new_credential() (in module hop.auth)

 	
 	requeue_message() (hop.robust_publisher.PublicationJournal method)

 	RobustProducer (class in hop.robust_publisher)

 	run() (hop.robust_publisher.RobustProducer method)

S

 	
 	select_matching_auth() (in module hop.auth)

 	serialize() (hop.models.Blob method)

 	(hop.models.GCNCircular method)

 	(hop.models.MessageModel method)

 	set_up_logger() (in module hop.cli)

 	
 	ssl (hop.auth.Auth property)

 	ssl_ca_location (hop.auth.Auth property)

 	start() (hop.robust_publisher.RobustProducer method)

 	stop() (hop.robust_publisher.RobustProducer method)

 	Stream (class in hop.io)

U

 	
 	username (hop.auth.Auth property)

V

 	
 	VOEvent (class in hop.models)

W

 	
 	write() (hop.io.Producer method)

 	(hop.robust_publisher.RobustProducer method)

 	
 	write_auth_data() (in module hop.auth)

 	write_raw() (hop.io.Producer method)

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

nav.xhtml

 Table of Contents

 		
 hop documentation

 		
 Installation

 		
 Quickstart

 		
 Using the CLI

 		
 Publish messages

 		
 Consume messages

 		
 View Available Topics

 		
 Using the Python API

 		
 Publish messages

 		
 Consume messages

 		
 Streaming

 		
 The Stream Object

 		
 Anatomy of a Kafka URL

 		
 Committing Messages Manually

 		
 Attaching Metadata to Messages

 		
 Authentication

 		
 Configuration

 		
 Using Credentials

 		
 Message Formats

 		
 Structured Messages

 		
 Unstructured Messages

 		
 Register External Message Models

 		
 Define a message model

 		
 Register a message model

 		
 Set up entry points within your package

 		
 Robust Publication

 		
 The RobustProducer

 		
 Usage

 		
 Miscellaneous Details

 		
 Commands

 		
 hop auth

 		
 hop list-topics

 		
 hop publish

 		
 hop subscribe

 		
 hop version

 		
 hop-client API

 		
 hop.auth

 		
 hop.cli

 		
 hop.configure

 		
 hop.io

 		
 hop.robust_publisher

 		
 hop.publish

 		
 hop.subscribe

 		
 hop.models

 		
 hop.plugins

 		
 hop.version

